
TPTP Java Profiler 
Mario J Lorenzo (mjlorenz@us.ibm.com), Software Engineer, IBM 

 

This article will demonstrate the Eclipse Test & Performance Tools Platform. 

This tutorial will include the installation, setup, and usage of TPTP including 

instructions on remotely profiling an application running in a production or test 

environment. This tutorial will also provide tips on how to interpret results for various 

metrics collected. 

 

An Introduction to Eclipse TPTP 

 The Eclipse TPTP tool is an 

excellent method to analyzing an 

application’s memory consumption 

and performance statistics. Although 

this tool offers many other 

interesting testing functions, this 

article will only focus on the 

profiling tools. 

 

 To get started: 

(For non-eclipse users) 

1. Point your browser to http:// 

eclipse.org/tptp/home/downloads/ 

2. Click on the ‘TPTP all-in-one 

package’ 

3. Choose a download mirror 

and download 

4. Extract the zip file 

5. Run the ‘eclipse.exe’ 

6. Select the default workspace 

or create your own. 

(For eclipse users) 

1. Within your Eclipse 

workbench file menu, select 

Software Updates->Find and 

Install. 

2. Choose ‘Search for new 

features to install’ option 

3. Add a ‘Remote site’ with the 

following url: 
‘http://eclipse.org/tptp/updates/’ 

4. Click ‘finish’ and follow the 

wizard to download the TPTP 

features. 

 

After installing and running the 

eclipse workbench you will see a 

new item on the toolbar:  

 

Playing with an Example  

For a simple example to test out 

your new profiling tool download 

the following example eclipse 

project and import into your 

workbench (File->Import->Existing 

Eclipse project) 

http://www.eclipse.org/articles/Article-

TPTP-Profiling-

Tool/productCatalogSample.zip 

and the corresponding resource 

files: 
http://www.eclipse.org/articles/Article-

TPTP-Profiling-

Tool/xmlProductFiles.zip
1
 

 

After installing the sample 

project and the resource files, run 

the project as a ‘Java 

Application’. You should see the 

console view display information 

about various products. These 

displayed products are the result 

of the sample application parsing 

many XML files and outputting 

their content. 

 

 

Configuring the Java Profiler 

                                                 
1
 Java Application Profiling using TPTP 

(Valentina Popescu, eclipse.org, February 2006): 

http://www.eclipse.org/articles/Article-TPTP-

Profiling-Tool/tptpProfilingArticle.html 

mailto:mjlorenz@us.ibm.com
http://www.eclipse.org/articles/Article-TPTP-Profiling-Tool/productCatalogSample.zip
http://www.eclipse.org/articles/Article-TPTP-Profiling-Tool/productCatalogSample.zip
http://www.eclipse.org/articles/Article-TPTP-Profiling-Tool/productCatalogSample.zip
http://www.eclipse.org/articles/Article-TPTP-Profiling-Tool/xmlProductFiles.zip
http://www.eclipse.org/articles/Article-TPTP-Profiling-Tool/xmlProductFiles.zip
http://www.eclipse.org/articles/Article-TPTP-Profiling-Tool/xmlProductFiles.zip


Before profiling this Sample 

Project you must first configure 

the Java Profiler. By clicking on 

the ‘down-arrow’ on the newly 

added profile item on the toolbar 

and selecting ‘Profile …’ 

 
Once the dialog appears, double-

click on ‘Java Application’ from 

the list: 

 
After clicking on ‘Java 

Application’ a new item will 

appear and some configuration 

tabs will appear on the right-side 

of the dialog. 

 

First give this new profile a name 

(the text field atop of the tabs). 

You will notice that in the ‘Main’ 

tab the ‘Project’ field already 

selected a Java Project from your 

Workspace. If this is not the 

Sample project, then click on 

‘Browse’ and select the 

appropriate project.  

 

Once you select a Java Project 

the ‘Main class’ field will be 

populated with the main class for 

the project. If you are working 

with the sample project this 

should read: 

“com.sample.product.Product” 

There are many tabs that allow 

you to configure runtime 

information. These tabs are 

standard when running any Java 

Application and will not be 

covered in this tutorial. 

Fortunately you don’t need to 

configure any of those tabs. The 

entire Profiler configuration can 

be manipulated through the 

‘Monitor’ tab. This tab allows 

you to configure all sorts of 

information regarding the Java 

Profiler. 

 

 
 

Here you will be to control the 

following: 

 Profiling Filters 

 Basic memory Analysis 

 Execution Time Analysis 

 Method Code Coverage 

 

Creating a Profiling Filter 

Specifying a filter is important. 

A filter allows you to exclude or 

include metrics for any given 

java packages. Since a simple 

Java Runtime Environment can 

contain thousands of classes, it is 

beneficial to suppress some of 

this data that only obscure your 

object. With a well defined filter 

you will be able to easily identify 



the classes that you are interested 

in analyzing.  

Start by double-clicking on the 

‘Java Profiling’ root tree item. A 

new dialog will appear with 

several pre-defined filters. Click 

on ‘add’ and specify a name for 

your new filter. 

Now you are able to add filter 

rules. For this sample (and for 

many of your profiling activities 

to come) it is best to create two 

rules: 

 Include your packages only 

 Exclude all other packages 

The syntax for specifying a rule 

is simply: ‘yourpackage[*]’ 

The asterisk specifies that you 

wish to include any and all 

classes that include this pattern. 

 

 
 

For the Exclude rule just specify 

a ‘*’ for both class and method. 

 

Basic Memory Analysis 

You will notice an item called 

‘Basic Memory Analysis’ within 

the Monitor tab. If selected, this 

will provide metrics involving 

the memory consumption for 

each class that you are filtering 

for. Select this option and then 

click on ‘Edit Options’. You will 

see an option to collect instance 

level information. Note: It is not 

recommended to collect instance 

level data unless you have a very 

restricting filter. Otherwise the 

profiling process will not be very 

response and can lock up your 

workbench. 

 

Execution Time Analysis 

Execution time analysis is the 

most important option to use 

when profiling an application. 

This feature provides useful 

information about performance 

of the application and various 

options for metrics that will whet 

your appetite.  

 



Method CPU Time 

Execution Time Analysis dialog 

offers various options, the first of 

which is related to method CPU 

time. If selected, this option will 

provide cpu time metrics for each 

method call that matches your 

filter.  

The time information includes 

base time, average time and 

cumulative time.  

Base time calculates the cpu time 

for the method excluding any 

calls made to other methods. So 

the base time reflects the time 

actually spent in the method. 

Average time of a method is the 

average base time of the method 

for all calls to the method. So the 

avg gives a representation of the 

base time over the number of 

calls made to the method. 

Cumulative time represents the 

total time taken by the method 

including any subsequent calls to 

other methods. 

 

Boundary Depth 

The boundary depth represents 

how many method calls, starting 

at some method that meets your 

filter, should be displayed for 

methods that don’t meet your 

filter. In essence, how many 

method calls would you like to 

be included in the reports for a 

stack trace of method calls that 

fall outside your filter? 

Including boundary information 

is useful to provide context to 

your method calls. It allows you 

to see what surrounding methods 

(and their metrics) were called 

for each of your filter-matched 

methods. 

Generally you should set the 

depth from 1 to 3. Keep in mind 

that this is an exponential growth 

in information that must be 

collected therefore it is best to 

keep it small. 

 

Execution Report Type 

There are two options to consider 

when selecting the format of the 

execution statistics in your 

reports. 

The first format is tabular data. 

This means that all the data will 

be in tables that you can sort, 

filter, and examine. These 

include views that allow you to 

sort by base, average, cum. time. 

It also allows you to sort by 

package, class, or method. This 

will be covered later on, but for 

now it is important to decide 

what format you prefer. 

The next format provides visual 

models and representation of the 

execution flow of the application 

you are profiling. 

This option is called graphical 

details. It provides UML 

sequence diagrams that model 

the dynamic (or interactive) 

behavior of the application. It 

also provides great way to view 

threads and to drill in and find 

which method calls within a 

given thread is taking up 

execution time. This is my 

preferred option to look at the 

data. However keep in mind that 

the responsiveness of this 

graphical format is slower, and if 

you are not being exclusive in 

your filtering, this may not be 

useful to profile huge 

applications during real-time. 

 



Method Code Coverage 

As you would expect, this option 

provides details about method 

coverage of your application. It is 

a good way to see what 

percentages of the methods are 

being called as well as the count. 

This helps to determine the main 

execution flow of an application 

especially when profiling an 

unfamiliar application. I tend not 

to collect this information since I 

am mostly interested in execution 

time. 

 

Profiling the Example 

Once you have selected the 

options, click on ‘Profile’ to 

begin profiling. 

The workbench should 

automatically switch you to an 

Eclipse Profiling and Logging 

perspective.  

On the navigator view (left side) 

you will see the application that 

you are profiling with a report 

(with timestamp) for each profile 

instance.  

 
Double-click the ‘Basic memory 

Analysis’ report. You should see 

a tab view called ‘Memory 

Statistics’ displayed with all the 

memory metrics for this 

application. 

 

 

 

 

   


