
IBM Systems & Technology Group

© 2007 IBM Corporation

Java Performance Analysis

Mario J Lorenzo

IBM Systems & Technology Group

© 2003 IBM Corporation

Introduction

 Many of the costly issues discovered after delivery of a

system may have been remedied in design or

implementation if they were detected early in the

development cycle.

 Just like any human illness, early detection is the key to a

healthy and functional system that, more often then not,

averts the dangers and cost of surgery.

 By integrating performance and scalability analysis within

the development process these issues can be detected and

corrected.

IBM Systems & Technology Group

© 2003 IBM Corporation

Overview

 This presentation will discuss various techniques that help identify
and solve many of the most common Java performance issues
found today.

 This presentation will introduce and discuss the following topics:

– Excessive object creation

– Importance of Interface design

– Avoiding re-computation

– Interchange types

– Using thread pooling to avoid excessive thread creation

– Remote Interface Design

– Immutable and Mutable Object traps

– Using Weak Listeners

– Tips on Servlet & JSP

 Each topic will contain an introduction, examples, and design
techniques that can be used to increase performance and
scalability.

IBM Systems & Technology Group

© 2003 IBM Corporation

Interface Design

IBM Systems & Technology Group

© 2003 IBM Corporation

Interface Design Introduction

 Poor interface design is the seed to many

performance problems.

 Interfaces implemented by components can have

a significant effect on the behavior and

performance of the programs that use them.

 So how do interfaces effect performance?

Poor choice of algorithms are

the easiest performance

problems to fix.

IBM Systems & Technology Group

© 2003 IBM Corporation

How interface design impacts performance?

 A class’s interface defines what operations the class can

perform.

 It can also define its object-creational behavior and the

sequence of method calls required to use it.

 A class’s constructors and methods will dictate whether an

object can be reused.

 Whether its methods will create (or require a caller) to create

intermediate objects.

 How many calls needed in order to use a given class.

+

All of these factors affect performance

IBM Systems & Technology Group

© 2003 IBM Corporation

Avoid Excessive object creation

 Look out for object creation inside loops

 Avoid unnecessarily creating temporary or intermediate
objects

 String (and Immutable) classes aka String Trap

–Immutable: new object must be created each time it is modified
or constructed.

–Major source of object creation

–Tip: use StringBuffer to avoid String Trap
(String Builder for Java 5 and above)

–Sometimes impossible to avoid

•When using interfaces that are defined only in terms of Strings

IBM Systems & Technology Group

© 2003 IBM Corporation

Example

 A Computational Biology application

–Uses pattern matching to detect recurring strings in a
DNA sequence.

•Ex. ACGTCCT or ACGTCCT

–The application will reuse a helper class (ExpMatcher)
that will aid in the matching of a given pattern within a
sequence.

–Since this app is meant to be fast and efficient we stay
away from using String and instead we use a character
buffers.

IBM Systems & Technology Group

© 2003 IBM Corporation

Example

 Very bad interface

public class ExpMatcher {

 public ExpMatcher(String regExp, String inputText) {…}

 public String getNextMatch() {…}

}

while(…) {

 String arg = new String(charBuffer, start, end);

 ExpMatcher matcher = new ExpMatcher(regExp, arg);

String result = matcher.getNextMatch();

If(result != null) {…}

}

 Client

•Can’t use ExpMatcher more than once since its tied to the input text

•This means you have to construct a new ExpMatcher every time.

IBM Systems & Technology Group

© 2003 IBM Corporation

Example

 Bad interface:

 Client

public class ExpMatcher {

 public ExpMatcher(String regExp){...}

 public String match(String inputText) {…}

 public String getNextMatch() {...}

}

ExpMatcher matcher = new ExpMatcher(someRegExp);

while(…) {

String arg = new String(charBuffer, start, end);

String result = matcher.match(arg);

 if(result != null) {…}

•Requires caller to create a String to represent the text to be matched

•Returns a String even if our app doesn’t care about the result

•Our goal of avoiding String is lost

IBM Systems & Technology Group

© 2003 IBM Corporation

Example

 Better interface

 Client

public class ExpMatcher {

 public ExpMatcher(String regExp){...}

 public int match(String inputText) {...}

 public int match(char[] inputText) {...}

 public int match(char[] inputText, int offSet, int length) {...}

 public int getNextMatch() {...}

 public int getMatchLength() {...}

 public String getMatchText() {...}

}

ExpMatcher matcher = new ExpMatcher(someRegExp);

//…

int offset = matcher.match(charBuffer, start, end);

if (offset > 0) {…}

IBM Systems & Technology Group

© 2003 IBM Corporation

Example Conclusion: what did we learn?

 The Strings used in the examples were just to exchange data

–this is called an interchange type

• When caller nor callee is likely to actually want the data in a given format.

• ex. JDBC ResultSet

 The interface forced the caller to use Strings

 Performance takes a hit due to the set-up time to make the call and
recovery time after the call.

 Unfortunately these types of issues cannot be resolved quickly
(like last minute fixes).

–Why? Because it is difficult to change a class’ interface

 Spend extra time during design phase considering the performance
impact of your class interfaces!

IBM Systems & Technology Group

© 2003 IBM Corporation

Java Techniques to Avoid Performance Traps

 Caching

– avoid re-computation

 Thread pooling

–avoid costly thread creation

 Flyweight pattern

–separate objects intrinsic state from extrinsic state

 Weak references

–Use Weak data structures so that listeners that are no longer used can be cleaned up by GC

 Interface Designs

–Accept input in various types (avoid temporary object creation)

–Avoid object creation and Interchange Types

• Provide finer-grained accessor functions

• Exploit mutability – provide method that accept mutable objects to pass in results

 Remote Interface Design

–Opposite approach to above cited Interface design tips

–Avoid constant remote method invocation by providing methods that retrieve several items
simultaneously

–Avoid returning remote objects when caller does not need to hold reference to remote object

–Avoid passing complex remote objects to remote methods when no copy is needed.

Look out for

Recomputation!

Use caching to

remedy!

IBM Systems & Technology Group

© 2003 IBM Corporation

Java Performance Traps

 Strings (Immutable objects)

 Thread creation

 Interface design

 Poor algorithm

 Excessive Object creation

 Remote Interface design

 Interchange types

 Mutable objects

 Listeners

 Servlets & JSP

IBM Systems & Technology Group

© 2003 IBM Corporation

The End

 Performance analysis should be an integral part of

your design and development cycles!

A little now saves a lot of later!

